VAR-SOM-AM43 Yocto Daisy GS
About this Manual
This document describes how to install Variscite's Yocto release for the VAR-SOM-AM43.
The Yocto distribution provides a fundamental software platform for development, deployment and execution on VAR-SOM-AM43. It abstracts the functionality provided by the hardware.
In this context, the document contains instructions to:
- Install the release on a development machine.
- Build the sources included in this release.
- Installing the binaries on the VAR-SOM-AM43.
- Booting the VAR-SOM-AM43.
Installation
Prerequisites
Before starting the installation, make sure below system requirements are met:
- Host machine running a Ubuntu 12.04 64 LTS.
- VAR-SOM-AM43 Evaluation Kit + VAR-SOM-AM43 Yocto support installation sources and binaries (from FTP). Please refer to support@variscite.com for obtaining FTP credentials.
The Linux host is used for the following:
- Recompiling U-Boot / kernel.
- Hosting the NFS server to boot the EVM with NFS as root filesystem.
Either of Windows or Linux host can be used for:
- Hosting the TFTP server required for downloading the kernel and file-system images from U-Boot using Ethernet.
- Running a serial console terminal application
Building the Yocto distribution via Bitbake will produce a complete set of downloaded source code + binaries for each component:
- Yocto build environment
- Downloaded Linux kernel source code + build kernel binaries (DTB and zImage) for VAR-SOM-AM43.
- Downloaded U-Boot source code + build U-boot binaries (MLO and U-boot) for VAR-SOM-AM43.
- Linux root file-system.
Install the Arago toolchain
$ wget --no-check-certificate https://launchpad.net/linaro-toolchain-binaries/trunk/2013.03/+download/gcc-linaro-arm-linux-gnueabihf-4.7-2013.03-20130313_linux.tar.bz2 $ sudo tar -jxvf gcc-linaro-arm-linux-gnueabihf-4.7-2013.03-20130313_linux.tar.bz2 -C /opt
Install development tools
$ sudo apt-get install git build-essential diffstat texinfo gawk chrpath gcc-multilib wget socat libsdl1.2-dev ia32-libs mtd-utils
Download the Yocto Distribution
To quickly start making your own builds using meta-ti BSP layer and meta-arago Distribution layer, you can follow this short Quick Start section by entering below commands. For more expanded guide with each step detailed and sample output of the entered commands shown, please see the next Detailed Setup section.
$ mkdir ~/yocto_varsomam43_daisy $ cd ~/yocto_varsomam43_daisy $ git clone git://arago-project.org/git/projects/oe-layersetup.git tisdk $ cd tisdk
Downloading VAR-SOM-AM43 Support
Download the VAR-SOM-AM43 Yocto support installation from Variscite FTP:
- /VAR-SOM-AM43/Software/Linux/YOCTO_Daisy_1.6_Release_2_v4/VAR-SOM-AM43-Yocto_1_6_installation_Release_2_V4.tar.gz
Extract Variscite Yocto installation as follows:
$ mkdir ~/yocto_varsomam43_daisy/var_yocto_installation $ cd ~/yocto_varsomam43_daisy/var_yocto_installation $ tar -xvzf VAR-SOM-AM43-Yocto_1_6_installation_Release_2_V4.tar.gz
Installing the Yocto Daisy 1.6 Distribution
To install the YOCTO distribution, please type the following commands:
$ cd ~/yocto_varsomam43/tisdk $ ./oe-layertool-setup.sh -f ../var_yocto_installation/tisdk/var_configs/var_arago-daisy-config.txt $ cd build $ . conf/setenv
Installing the VAR-SOM-AM43 support
Once the Arago Yocto distribution is installed on the Host Ubuntu machine, the developer should apply the Variscite installation, as follows:
$ cd ~/yocto_varsomam43_daisy/tisdk $ ../var_yocto_installation/variscite_utils/install_var_yocto.sh
At this point, Variscite Yocto support has been installed over the Yocto distribution and can be built.
local.conf customizations
Edit you local.conf file:
$ gedit conf/local.conf
Change your parallel build and download directory:
Parallel build
Set the build parameters to fully utilize your host machine
BB_NUMBER_THREADS = '4'
PARALLEL_MAKE = '-j 6'
BB_NUMBER_THREADS should be your host machine's number of threads minus 2 or same.
PARALLEL_MAKE should be the number of threads your host machine has plus two.
Download directory.
Recommended to save download time and space.
DL_DIR = "/home/<uname>/yocto_dl"
Setting up the Toolchain
$ export PATH=/opt/gcc-linaro-arm-linux-gnueabihf-4.7-2013.03-20130313_linux/bin:$PATH
Building the VAR-SOM-AM43 Yocto image
First, change directory to the build directory of Yocto:
$ cd ~/yocto_varsomam43_daisy/tisdk/build
The developer can build the tisdk-rootfs-image image as follows:
$ MACHINE=varsomam43 bitbake tisdk-rootfs-image
After the image was built, all images will be located in: ~/yocto_varsomam43_daisy/tisdk/build/arago-tmp-external-linaro-toolchain/deploy/images/varsomam43 - Specifically:
- MLO image
- u-boot.img image
- zImage
- zImage-var-som-am43.dtb
- Compressed rootfs image: tisdk-rootfs-image-varsomam43.tar.bz2
If the rootfs directory already exists - Please make sure to erase all its content before extracting a new rootfs image into it:
$ . conf/setenv $ sudo rm -rf ~/yocto_varsomam43_daisy/rootfs/*
Extract the rootfs as follows:
$ sudo mkdir ~/yocto_varsomam43_daisy/rootfs $ sudo tar xvf ./arago-tmp-external-linaro-toolchain/deploy/images/varsomam43/tisdk-rootfs-image-varsomam43.tar.gz -C ~/yocto_varsomam43_daisy/rootfs
This creates a rootfs directory for the Yocto / VAR-SOM-AM43 build.
Linux Root File-System
To boot-up Linux, a target file-system is needed. A file-systems is built from the Yocto distribution for VAR-SOM-AM43.
- Demo filesystem (~250MB) - This file system is created by taking the base file system and adding all the additional SDK components such as 3D graphics, matrix, profiling tools, etc... - tisdk-rootfs-image-varsomam43.tar.bz2
Further explanation about customizing these file-systems can be found here.
Create a bootable SD-Card
In general you may Follow http://processors.wiki.ti.com/index.php/Sitara_Linux_SDK_create_SD_card_script
Variscite has modified create-sdcard.sh script with all required options already selected.
To create a bootable SD-Card image, which includes a UBIFS file-system based recovery image - Please do as follows:
- Insert a 4GB SD-Card to host computer
- Run dmesg command to identify which /dev/sdX was created
- To generate a UBIFS rootfs image that fits into 256MB flash (image size == 220MB) - Run script:
$ cd ~/yocto_varsomam43_daisy/variscite_utils $ sudo ./create-ubi.sh ~/yocto_varsomam43_daisy/rootfs/ tisdk-rootfs-image/
- To generate the SD-Card - Run script (and choose the correct /dev/sdX of the 4GB SD-Card inserted):
$ cd ~/yocto_varsomam43_daisy/variscite_utils $ sudo ./create-sdcard.sh [/home/user]/yocto_varsomam43_daisy/tisdk [/home/user]/yocto_varsomam43_daisy/rootfs/
For example:
$ cd ~/yocto_varsomam43_daisy/variscite_utils $ sudo ./create-sdcard.sh /ws/am43/yocto_varsomam43_daisy/tisdk /ws/am43/yocto_varsomam43_daisy/rootfs/
The above procedure will result in a bootable SD-Card including MLO, U-boot, Kernel and file system + Linux recovery image to flash the NAND based on UBI file-system. To boot the bootable SD-Card, follow the steps below:
- Insert the SD card into the SD/MMC slot of the custom board
- Press and hold the boot select switch while powering ON the board
- Login as root (no password)
Touch screen calibration
The image skips Touch screen calibration by default in order to support carrier boards without Touch screen => The user should calibrate the screen manually on the first boot after burning an image (either on new MMC or to NAND), As follows:
Connect Touch screen and display and type the following command in the Linux shell:
$ weston-calibrator
Support carrier boards without a Touch screen
In order to skip the Touch screen calibration on the first boot on carrier boards without a Touch screen -
Please insert the SD-Card to a Linux machine (or VM) after creating the SD-Card and type the following command to disable touch screen calibration at the first boot:
$ sudo touch /media/boot/ws-calibrate.rules $ sync
Boot
The Kernel and root the file-system can be booted either from NAND, SD-Card or can be retrieved via ethernet to RAM using TFTP.
eMMC root file-system is ext4 based which is the recommended filesystem for eMMC flashes.
Following sections describe various kernel boot options possible.
Boot from MMC/SD
For creating a bootable SD , follow the below instruction on creating a rescue SD. http://www.variwiki.com/index.php?title=VAR-SOM-AM43_Arago_GS#NAND_Recovery
To boot the Linux, type:
U-Boot# run mmc_boot
Boot from NAND
By default the VAR-SOM-AM43 boots from NAND (or eMMC).
The SPL, U-Boot, kernel uImage and UBIFS filesystem are flashed on the NAND flash at production.
Flash Images to NAND
Replacing Nand Flash images can be done from either Linux user space or U-Boot.
From Linux shell
$ nand-recovery.sh -o TISDK
After the image is burned to the NAND flash device, please do as follows: 1) Set dip-switches to boot from NAND on the carrier board. 2) Restart the board. 3) Remove the SD-Card.
Please notice, that the VAR-SOM-AM43 has 2 variants:
1) ETH + WiFi ==> Need to download zImage-var-som-am43.dtb ==> No need to change anything in the download script.
2) 2 x ETH devices ==> Need to download zImage-var-som-am43-eth1.dtb ==> The user should update the download script (/sbin/nand-recovery.sh to download
zImage-var-som-am43-eth1.dtb to the flash.
Boot from eMMC
By default the VAR-SOM-AM43 boots from eMMC (or NAND).
The SPL, U-Boot, kernel uImage and UBIFS filesystem are flashed on the eMMC flash at production.
Flash Images to eMMC
Replacing Nand Flash images can be done from either Linux user space or U-Boot.
From Linux shell
$ yocto-emmc-recovery.sh
After the image is burned to the eMMC device, please do as follows:
1) Set dip-switches to boot from eMMC on the carrier board.
2) Restart the board.
3) Remove the SD-Card.
Please notice, that the VAR-SOM-AM43 has 2 variants:
1) ETH + WiFi ==> Need to download zImage-var-som-am43.dtb ==> No need to change anything in the download script.
2) 2 x ETH devices ==> Need to download zImage-var-som-am43-eth1.dtb ==> The user should update the download script (/sbin/nand-recovery.sh to download
zImage-var-som-am43-eth1.dtb to the flash.
Boot over Network (Ethernet)
When setting a MAC address please ensure that the LS-bit of the 1st byte is not 1 i.e. when setting the MAC address: y in xy:ab:cd:ef:gh:jk has to be an even number.
For more info this refer to the wiki page http://en.wikipedia.org/wiki/MAC_address.
When kernel image and root file-system are fetched from a TFTP/NFS server:
- Ensure that the SOM is connected to network with DHCP and TFTP server set up
- If the TFTP server supports negotiation between client and server, Disable it
- Copy 'uImage' kernel image to TFTP server's root directory.
- Set 'ethaddr' U-Boot environment variable with proper ethernet address in format 'xx:xx:xx:xx:xx:xx' (replace 'xx' with proper hexadecimal values)
- Setup NFS server and export one of the provided pre-build root file-system
- Execute following commands at U-Boot prompt. Assuming kernel image name as 'uImage':
U-Boot # setenv fdtfile '<var-som-am43.dtb filename on TFTP>' U-Boot # setenv bootfile <zImage filename on TFTP> U-Boot # setenv netargs 'setenv bootargs console=${console} ${optargs} root=/dev/nfs nfsroot=${serverip}:${rootpath},${nfsopts} rw ip=dhcp vram=50M' U-Boot # setenv serverip <Server IP address> U-Boot # setenv rootpath '<Path of the exported root file-system on the NFS server>' U-Boot # run netboot
Note, that the roopath parameter should be the directory of the extracted rootfs image, as explained above in section Building the VAR-SOM-AM43 Yocto image extracting the image to '[/home/user]/yocto_varsomam43_daisy/rootfs/'.
eMMC Recovery
As an easy and fast way to recover the VAR-SOM-AM43 eMMC flash, Variscite provides a recovery SD card image that can be used to install the pre-built Linux and Android systems.
This SD card image includes a script (emmc-recovery.sh) that installs all the boot images and root file-system.
Preparing rescue SD-Card
- Plug your SD card to your Linux machine, run dmesg and see what device is added (i.e. /dev/sdX)
- xz -d am43-som-recovery-sd_Yocto_1_6_v1.img.xz
- dd if=am43-som-recovery-sd_Yocto_1_6_v1.img of=/dev/sdX bs=128k
- sync
Recover eMMC Flash: TI-SDK (Linux with TI Matrix)
- Insert the SD-card into the SD/MMC slot of the custom board
- Make sure that the state of the following dip-switches on the VAR-SOM-AM43 carrier CustomBoard is the following:
- SW1=1
- SW2=2
- Login as root (no password)
- From Linux command line, type: "yocto-emmc-recovery.sh -o TISDK". (This will install Linux on the eMMC flash)
- Unplug the SD card and reboot
U-Boot
In AM437x the ROM code serves as the 1st stage bootloader. The 2nd and the 3rd stage bootloaders are based on U-Boot.
The binary for the 2nd stage is referred to as SPL and the binary for the 3rd stage as simply U-Boot. SPL is a non-interactive loader and is a specially built version of U-Boot. It is built concurrently when building U-Boot.
The ROM code can load the SPL image from the NAND or SDMMC devices.
Building U-Boot out-of-tree
Downloading source code
- U-Boot sources can be downloaded from git://github.com/varigit/u-boot-VAR-SOM-AMxx.
- U-boot is built automatically by bitbake.
- This directory already includes Variscite's patches (already applied) to support the VAR-SOM-AM43.
- Based on the open source repository: git://git.denx.de/u-boot.git, commit: 37b608a52dcb13312a4f7ccea199cd6bac76d298.
First, clone the git repositories to a local directory, as follows:
$ mkdir ~/varsomam43 $ cd ~/varsomam43 $ git clone git://github.com/varigit/u-boot-VAR-SOM-AMxx
Setup Toolchain path
$ export PATH=/opt/gcc-linaro-arm-linux-gnueabihf-4.7-2013.03-20130313_linux/bin:$PATH
Building U-boot
- To configure U-boot to varsomam43 / MMC configuration, please type:
$ make -j6 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- mrproper $ make -j12 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- varsomam43_config
- To configure U-boot to varsomam43 / eMMC configuration, please type:
$ make -j6 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- mrproper $ make -j12 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- varsomam43_emmc_config
- To configure U-boot to varsomam43 / NAND flash configuration, please type:
$ make -j6 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- mrproper $ make -j12 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- varsomam43_nand_config
- Build U-boot:
$ make -j6 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
- Insert VAR-SOM-AM43 SD-Card to Host PC.
- Copy to SD-Card:
$ sudo cp MLO /media/boot $ sudo cp u-boot.img /media/boot $ sync $ sudo umount /media/boot/ $ sudo umount /media/rootfs $ sudo umount /media/user
U-Boot Environment Settings
The VAR-SOM-AM43 U-Boot has default environmant settings that allows boot from SD/MMC card, eMMC device, and Ethernet.
By default the boot device is SD/MMC card.
Linux Kernel
Downloading source code
- Linux kernel sources can be downloaded from git://github.com/varigit/kernel-VAR-SOM-AMxx
- The kernel is built automatically by bitbake.
- This directory includes Variscite's patches(already applied) to support the VAR-SOM-AM43.
- Based on the open source repositorie: git://git.ti.com/ti-linux-kernel/ti-linux-kernel.git, Branch: ti-linux-3.14.y
First, clone the git repositories to a local directory, as follows:
$ mkdir ~/varsomam43 $ cd ~/varsomam43 $ git clone https://github.com/varigit/kernel-VAR-SOM-AMxx
Setup Toolchain path
$ export PATH=/opt/gcc-linaro-arm-linux-gnueabihf-4.7-2013.03-20130313_linux/bin:$PATH
Cleaning the Kernel Sources
Prior to compiling the Linux kernel make sure that the kernel sources are clean.
Enter linux kernel directory:
$ cd kernel-VAR-SOM-AMxx
The command to clean the kernel is:
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- mrproper
Configuring the Kernel
Before compiling the Linux kernel it needs to be configured to select which components will become part of the kernel image:
Using Default Configurations
To build the defualt configuration for the VAR-SOM-AM43:
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- tisdk_var-som-am43_defconfig
Customizing the Configuration
For configuring the kernel run:
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig
Once the configuration window is open you can select which kernel components will be included in the build. Exiting the configuration will save your selections to a file in the root of the kernel tree called .config.
Compiling the Kernel
Once the kernel has been configured compile kernel:
$ make -j12 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- uImage LOADADDR=0x80200000
This will result in a kernel image file being created in the arch/arm/boot/ directory called uImage. This file can be used by u-boot to boot your device.
If you selected any components of the kernel to be build as dynamic modules you must issue an additional command to compile those modules. The command is:
$ make -j12 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- modules
This will result in .ko (kernel object) files being placed in the kernel tree. These .ko files are the dynamic kernel modules. The next section will cover how to install these modules.
Building the VAR-SOM-AM43 device tree
To build the VAR-SOM-AM43 device tree (dtb image), please note the following - VAR-SOM-AM43 platform has 2 different device tree source files for different
SOM configurations:
1) var-som-am43.dts: To be used for a SOM with WIFI + on-SOM Gbit Ethernet
2) var-som-am43-eth1.dts: To be used for a SOM with dual Gbit Ethernet ports. On-SOM + on-Carrier.
To build for a SOM with WIFI + on-SOM Gbit Ethernet, please use the following command line:
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- var-som-am43.dtb
The image will be located in: arch/arm/boot/dts/var-som-am43.dtb
To build for a SOM with dual Gbit Ethernet ports. On-SOM + on-Carrier., please use the following command line:
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- var-som-am43-eth1.dtb
The image will be located in: arch/arm/boot/dts/var-som-am43-eth1.dtb
Installing the Kernel
Once the Linux kernel and modules have been compiled they must be installed. In the case of the kernel image this can be installed by copying the uImage file to the location for downloading using TFTP, or put in an SD-card.
For example: when using TFTP boot, /tftpboot directory is the common location, whereas when booting from SD card, file should be put in the first FAT partition.
To install the kernel modules, provide the rootfs location, see below.
First, extract the rootfs of the tisdk-rootfs-image image as follows:
$ sudo mkdir ~/yocto_varsomam43_daisy/rootfs $ sudo tar xvf ./arago-tmp-external-linaro-toolchain/deploy/images/tisdk-rootfs-image-varsomam43.tar.bz2 -C ../../rootfs
If the rootfs directory already exists - Please make sure to erase all its content before extracting a new rootfs image into it:
$ sudo rm -rf ~/yocto_varsomam43/rootfs/*
This command will create a directory tree in that location: lib/modules/<kernel version> which will contain the dynamic modules corresponding to this version of the kernel. The base location should usually be the root of your target file system. The general format of the command is:
$ sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- modules_install INSTALL_MOD_PATH=<path to root of file system>
For example if you are installing the modules to an NFS share located at ~/yocto_varsomam43_daisy/rootfs you would do:
$ sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- modules_install INSTALL_MOD_PATH=~/yocto_varsomam43_daisy/rootfs
Installing the kernel to a VAR-SOM-AM43 SD-Card
In order to install the kernel to the SD-Card, please follow the instructions below:
1) Insert SD-Card with VAR-SOM-AM43 image.
2) Build the kernel as explained above.
3) Install by executing the following commands:
$ sudo cp -a arch/arm/boot/zImage /media/rootfs/boot $ sudo cp -a arch/arm/boot/dts/var-som-am43.dtb /media/rootfs/boot $ sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- modules_install INSTALL_MOD_PATH=/media/rootfs $ sync $ sudo umount /media/boot $ sudo umount /media/rootfs $ sudo umount /media/user
Out-of-tree Kernel Modules
Some drivers like the SGX and WLAN drivers are delivered as modules outside of the kernel tree. These drivers binaries are already included in the pre-built root file-systems provided by Variscite.