VAR-SOM-MX7 Yocto Jethro R1 build: Difference between revisions
Line 122: | Line 122: | ||
= Create a bootable SD card = | = Create a bootable SD card = | ||
== SD card structure == | == SD card structure == | ||
The first unallocated | The first unallocated 4MiB are saved for U-Boot. It can be replaced using the dd command as described in "U-Boot out of tree" section below.<br> | ||
The first partition is | The first partition is formatted with FAT16 and contains the Linux image and device tree blobs. You can copy them as described in the Linux out of tree section.<br> | ||
The second partition is | The second partition is formatted with ext4 and contains the file system (including the kernel modules). | ||
== Yocto pre-built bootable SD card == | == Yocto pre-built bootable SD card == |
Revision as of 12:52, 23 August 2016
Installing required packages
Follow the link below and install all required packages on your machine.
www.yoctoproject.org/docs/latest/yocto-project-qs/yocto-project-qs.html
Please make sure you host PC is running Ubuntu 14.04 and install the following packages:
sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib build-essential chrpath socat libsdl1.2-dev sudo apt-get install autoconf libtool libglib2.0-dev libarchive-dev sudo apt-get install python-git xterm sed cvs subversion coreutils texi2html sudo apt-get install docbook-utils python-pysqlite2 help2man make gcc g++ desktop-file-utils libgl1-mesa-dev sudo apt-get install libglu1-mesa-dev mercurial automake groff curl lzop asciidoc u-boot-tools mtd-utils
Documentation
Documentation are available for Download from FreescaleJethroDocuments
Download Yocto Jethro for i.MX7 Freescale source
$ git config --global user.name "Your Name" $ git config --global user.email "Your Email" $ mkdir ~/bin (this step may not be needed if the bin folder already exists) $ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo $ chmod a+x ~/bin/repo $ export PATH=~/bin:$PATH $ mkdir ~/var-mx6ul-mx7-yocto-jethro $ cd ~/var-mx6ul-mx7-yocto-jethro $ repo init -u git://git.freescale.com/imx/fsl-arm-yocto-bsp.git -b imx-4.1.15-1.0.0_ga $ repo sync
Download Yocto Jethro with Meta Variscite VAR-SOM-MX7 support
$ cd ~/var-mx6ul-mx7-yocto-jethro/sources $ git clone https://github.com/varigit/meta-variscite-mx6ul-mx7 -b imx_4.1.15_ga-var01 $ cp meta-variscite-mx6ul-mx7/scripts/var-setup-release.sh ../ $ patch -p1 < meta-variscite-mx6ul-mx7/patch/Fix-FSL-multi-patch-append-bugs.patch
Setup and build Yocto
The following images can be built:
- fsl-imx-x11 - Only X11 graphics
- fsl-imx-wayland - Wayland weston graphics
- fsl-imx-xwayland - Wayland graphics and X11. X11 applications using EGL are not supported
- fsl-imx-fb - Frame Buffer graphics - no X11 or Wayland
Note: refer to ftp://customerv:Variscite1@ftp.variscite.com/VAR-SOM-MX6/Software/Linux/Yocto/fsl-yocto-imx-4.1.15_1.0.0-docs/Freescale_Yocto_Project_User's_Guide.pdf
Page 7 for further information.
Sample build scenarios:
Build X11 GUI image without Qt content
$ cd ~/var-mx6ul-mx7-yocto-jethro $ MACHINE=imx7-var-som DISTRO=fsl-imx-x11 source var-setup-release.sh -b build_x11
Optional: Direct downloads to /opt/yocto_downloads, make sure directory exists and all permissions are set
$ sudo mkdir /opt/yocto_downloads $ sudo chmod 777 /opt/yocto_downloads/ $ sed -i 's/DL_DIR ?= "${BSPDIR}\/downloads/DL_DIR = "\/opt\/yocto_downloads/g' conf/local.conf
launch bitbake:
$ bitbake fsl-image-gui
Build opensource QT5 image
$ cd ~/var-mx6ul-mx7-yocto-jethro $ MACHINE=imx7-var-som DISTRO=fsl-imx-fb source var-setup-release.sh -b build-fb
Optional: Direct downloads to /opt/yocto_downloads, make sure directory exists and all permissions are set
sed -i 's/DL_DIR ?= "${BSPDIR}\/downloads/DL_DIR = "\/opt\/yocto_downloads/g' conf/local.conf
launch bitbake:
$ bitbake fsl-image-qt5
Build Results
The resulted images are located in tmp/deploy/images/imx7-var-som:
File Name | Description |
---|---|
fsl-image-gui-imx7-var-som.sdcard | This image is for SD card boot. It can be flashed as-is on an SD card that can then be used to boot your system. For detailed information refer to the Create a bootable SD card section below. |
fsl-image-gui-imx7-var-som.tar.bz2 | Tarball with rootfs files. Can be used to create an NFS root file system on the host. See the Setup TFTP/NFS Yocto system section for more info. Also used to create our extended SD card. See the Create a bootable SD card section below. |
fsl-image-gui-imx7-var-som.ubi | A complete UBI image containing a UBIFS volume, for writing to NAND flash. |
zImage | Linux kernel image, same binary for SD card/eMMC/NAND flash. |
u-boot.imx-sd | U-Boot built for SD card/eMMC. |
u-boot.imx-nand | U-Boot built for NAND Flash. |
zImage-imx7d-var-som-emmc.dtb | Device tree blob for SOMs with eMMC. |
zImage-imx7d-var-som-nand.dtb | Device tree blob for SOMs with NAND flash. |
Create a bootable SD card
SD card structure
The first unallocated 4MiB are saved for U-Boot. It can be replaced using the dd command as described in "U-Boot out of tree" section below.
The first partition is formatted with FAT16 and contains the Linux image and device tree blobs. You can copy them as described in the Linux out of tree section.
The second partition is formatted with ext4 and contains the file system (including the kernel modules).
Yocto pre-built bootable SD card
The Yocto build products contains many files as explained in Build Results section above including a ".sdcard" file. For example fsl-image-gui-imx6ul-var-dart.sdcard. This is a complete image to be flashed directly to an SD card.
Example usage:
$ cd ~/var-mx6ul-mx7-yocto-jethro/build_x11 $ sudo dd if=tmp/deploy/images/imx6ul-var-dart/fsl-image-gui-imx6ul-var-dart.sdcard of=/dev/sdX bs=1M Replace sdX with the right device name.
Drawbacks of the native .sdcard yocto-built image:
- The second partition size doesn't use the entire SD card.
- The second partition is not labeled as rootfs.
- The NAND and eMMC flashing scripts are not included.
Create an extended SD card
Variscite provides var-create-yocto-sdcard.sh script that makes use of the .sdcard image mentioned above, extends the partitions of the SD card to the maximum available space, and copies the NAND flash burning scripts and relevant binaries for your convenience.
Later, you will be able to follow DART-6UL NAND Flash Burning do burn your images to NAND flash or eMMC
See usage below:
$ cd ~/var-mx6ul-mx7-yocto-jethro/build_x11 $ sudo ../sources/meta-variscite-mx6ul-mx7/scripts/var_mk_yocto_sdcard/var-create-yocto-sdcard.sh /dev/sdX Replace sdX with the right device name.
The script assume fsl-image-qt5-minimal build was used. It is very easy to modify it and adopt it to your requirements.
Boot board with a bootable SD card
Setting board dip-switches
Booting your system requires switching the relevant dip-switch to "Boot from SD card". See picture below.
- "00" - Boot from SD card - The picture mode
- "01" - Boot from eMMC
- "10" - Boot from NAND flash
- "11" is illegal.
Be aware that your SOM has either eMMC or NAND, but never both!
To boot board with SD card, Follow the steps below:
- Power-off the board.
- Insert the SD card into the SD/MMC slot of the carrier board (DVK)
- Switch the relevant dip-switch to "Boot from SD card"
- Power-up board
- The board will automatically boot into Linux from SD card
Automatic device Tree selection in U-Boot
Upon reset you will see the U-Boot SPL printouts. It will print also the SOM configuration:
On-SOM storage: SD only, eMMC, NAND.
WIFI if chip exits.
For example:
U-Boot SPL 2015.10-00532-g482dc88 (Jan 03 2016 - 10:05:42) i.MX6UL SOC Part number: DART-6U-A01 Assembly: AS11 Date of production: 2015 Dec 31 DART-6UL configuration: eMMC WIFI Ram size: 512 Boot Device: SD
As explained in the above Build Results table we have 4 optional configurations.
We implemented in U-Boot and automatic device tree selection, so when kernel boots, the U-Boot will load the corresponding device tree according to On-SOM configuration.
Boot From |
SOM Internal FLASH |
SOM has WIFI/BT |
Device Tree selected |
---|---|---|---|
SD | eMMC | Don't Care | imx6ul-var-dart-sd_emmc.dtb |
SD | NAND | Don't Care | imx6ul-var-dart-sd_nand.dtb |
eMMC | eMMC | Yes | imx6ul-var-dart-emmc_wifi.dtb |
eMMC | eMMC | NO | imx6ul-var-dart-sd_emmc.dtb |
NAND | NAND | YES | imx6ul-var-dart-nand_wifi.dtb |
NAND | NAND | NO | imx6ul-var-dart-sd_nand.dtb |
Disable Automatic Device Tree selection
To disable the automatic device tree selection in U-Boot:
$ setenv var_auto_fdt_file=N $ saveenv
Now you can set the device tree to meet your requirments. For example:
$ setenv fdt_file=imx6ul-var-dart-sd_emmc.dtb $ saveenv
Will select device tree that has SD and eMMC regardless if the SOM has WIFI.
$ setenv fdt_file=imx6ul-var-dart-sd_nand.dtb $ saveenv
Will select device tree that has SD and NAND regardless if the SOM has WIFI.
Make sure you don't set am illegal value like "imx6ul-var-dart-sd_nand.dtb" in a SOM that has eMMC flash.
Flash images to NAND/eMMC
Please refer to DART-6UL NAND Flash Burning
QT5/Embedded runtime
Environment Variables
The QT5/Embedded require environment variables to run correctly. DART6Ul support QT Embedded over Linux Frame Buffer. For example /etc/profile.d/tslib.sh can be edited. The following example enable touch, mouse and keyboard:
export TSLIB_TSEVENTTYPE='INPUT' export TSLIB_TSDEVICE='/dev/input/touchscreen0' export TSLIB_CALIBFILE='/etc/pointercal' export TSLIB_CONFFILE='/etc/ts.conf' export TSLIB_CONSOLEDEVICE='none' export TSLIB_FBDEVICE='/dev/fb0' export TSLIB_PLUGINDIR='/usr/lib/ts' export QT_QPA_PLATFORM=linuxfb:fb=/dev/fb0:size=800x480:mmSize=800x480 export QT_QPA_EVDEV_TOUCHSCREEN_PARAMETERS='/dev/input/touchscreen0' export QT_QPA_GENERIC_PLUGINS='tslib:/dev/input/touchscreen0,evdevmouse:/dev/input/event5,evdevkeyboard:/dev/input/event3'
Running Application
$ cd /usr/share/qt5/examples/ $ touch/dials/dials --platform linuxfb $ gui/rasterwindow/rasterwindow --platform linuxfb $ touch/fingerpaint/fingerpaint --platform linuxfb $ widgets/mainwindows/mainwindow/mainwindow --platform linuxfb
Next steps
In sections 1-6 we explained how to build Yocto for DART-6UL. We explained the results for NAND (UBI) and for SD card.
At this point you should have a bootable SD card with UBI images on it. You should be able to boot from the SD card using the boot select button and flash the NAND.
Next steps:
- Build and deploy the compiler and tools.
- Fetch U-Boot and compile it out of Yocto tools.
- Fetch Linux kernel and compile it out of Yocto tools.
Update Yocto Jethro i.MX6UL Meta Variscite DART-6UL support
From time to time we will post updates to meta-variscite-mx6ul-mx7. This will include improve features and bug fix. You can track the history log in the previous page to see if such an update was posted. In such a case follow the instructions below to update your tree.
$ cd ~/var-mx6ul-mx7-yocto-jethro/sources/meta-variscite-mx6ul-mx7/ $ git fetch origin $ git pull Set your enviroment $ cd ~/var-mx6ul-mx7-yocto-jethro $ MACHINE=imx6ul-var-dart DISTRO=fsl-imx-x11 source var-setup-release.sh -b build_x11 In order to update the kernel $ bitbake -c cleanall linux-variscite $ bitbake -c cleanall u-boot-variscite and build your image $ bitbake fsl-image-gui