VAR-SOM-MX7 GPIO: Difference between revisions
(Add category Debian) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{PageHeader|VAR-SOM-MX7 - GPIO}} {{DocImage|category1=VAR-SOM-MX7 | {{PageHeader|VAR-SOM-MX7 - GPIO}} {{DocImage|category1=Yocto|category2=Debian}} [[category:VAR-SOM-MX7]] __toc__ | ||
Line 47: | Line 47: | ||
gpio-128 (cd ) in hi | gpio-128 (cd ) in hi | ||
</pre> | </pre> | ||
= Manipulating GPIO using libgpiod = | |||
{{#lst:MX8M_GPIO|libgpiod_section}} | |||
= Manipulating a single GPIO via /sys/class/gpio = | = Manipulating a single GPIO via /sys/class/gpio = | ||
{{#lst:MX8M_GPIO|gpio_sysfs_warning_section}} | |||
== Using a command line or a script == | == Using a command line or a script == | ||
GPIOs in i.MX are grouped in groups of 32 pins.<br> | GPIOs in i.MX are grouped in groups of 32 pins.<br> | ||
Line 55: | Line 60: | ||
Assuming this GPIO is defined in your device tree, the following is an example of how to use it from userspace.<br> | Assuming this GPIO is defined in your device tree, the following is an example of how to use it from userspace.<br> | ||
<br> | <br> | ||
To | To export the GPIO for userspace use: | ||
<pre> | <pre> | ||
$ echo 196 > /sys/class/gpio/export | $ echo 196 > /sys/class/gpio/export | ||
</pre> | |||
<br> | |||
To configure as output: | |||
<pre> | |||
$ echo out > /sys/class/gpio/gpio196/direction | $ echo out > /sys/class/gpio/gpio196/direction | ||
</pre> | </pre> | ||
Line 71: | Line 80: | ||
To configure as input: | To configure as input: | ||
<pre> | <pre> | ||
$ echo in > /sys/class/gpio/gpio196/direction | $ echo in > /sys/class/gpio/gpio196/direction | ||
</pre> | </pre> | ||
Line 78: | Line 86: | ||
$ cat /sys/class/gpio/gpio196/value | $ cat /sys/class/gpio/gpio196/value | ||
</pre> | </pre> | ||
<br> | |||
To free the GPIO after you're done using it: | To free the GPIO after you're done using it: | ||
<pre> | <pre> | ||
$echo 196 > /sys/class/gpio/unexport | $ echo 196 > /sys/class/gpio/unexport | ||
</pre> | </pre> | ||
Latest revision as of 18:37, 28 April 2023
GPIO state
The current state of the system's GPIOs can be obtained in user-mode, as shown in the following example:
root@imx7-var-som:~# cat /sys/kernel/debug/gpio GPIOs 0-31, platform/30200000.gpio, 30200000.gpio: gpio-4 (wlreg_on ) out lo gpio-5 (usb_otg1_vbus ) out lo gpio-7 (usb_otg2_vbus ) out lo gpio-9 (ads7846_pendown ) in hi gpio-10 (hsic_hub_pwr_on ) out lo gpio-11 (Back ) in hi gpio-12 (reg_hsic_hub_connect) out lo gpio-14 (sysfs ) out lo GPIOs 32-63, platform/30210000.gpio, 30210000.gpio: gpio-46 (can2-3v3 ) out lo gpio-60 (Menu ) in hi gpio-61 (Home ) in hi GPIOs 64-95, platform/30220000.gpio, 30220000.gpio: GPIOs 96-127, platform/30230000.gpio, 30230000.gpio: gpio-99 (phy-reset ) out lo gpio-115 (spi_imx ) out lo gpio-119 (spi_imx ) out lo GPIOs 128-159, platform/30240000.gpio, 30240000.gpio: gpio-128 (cd ) in lo gpio-130 (VDD_SD1 ) out lo GPIOs 160-191, platform/30250000.gpio, 30250000.gpio: GPIOs 192-223, platform/30260000.gpio, 30260000.gpio:
Each GPIO is defined as in or out and the state is shown as lo or hi.
For example pin 128 is the SD card card-detect.
When an SD card is plugged in, the state will be:
gpio-128 (cd ) in lo
When the SD card is removed, the state will be:
gpio-128 (cd ) in hi
Manipulating GPIO using libgpiod
The Linux GPIO sysfs interface is being deprecated. Moving forward, user space should use the character device /dev/gpiochip*
instead. libgpiod provides bindings and utilities for for manipulating GPIO via user space.
libgpiod via command line
libgpiod provides command line utilities for GPIO:
gpiodetect | List all gpiochips present on the system, their names, labels and number of GPIO lines |
gpioinfo | List all lines of specified gpiochips, their names, consumers, direction, active state and additional flags |
gpioget | Read values of specified GPIO lines |
gpioset | Set values of specified GPIO lines, potentially keep the lines exported and wait until timeout, user input or signal |
gpiofind | Find the gpiochip name and line offset given the line name |
gpiomon | Wait for events on GPIO lines, specify which events to watch, how many events to process before exiting or if the events should be reported to the console |
i.MX GPIOs are organized in banks of 32 pins. Each bank corresponds to a character device /dev/gpiochip<bank index>
. The gpiodetect
utility can be used to inspect the available gpiochip character devices:
# gpiodetect gpiochip0 [30200000.gpio] (32 lines) gpiochip1 [30210000.gpio] (32 lines) ...
The gpioinfo
utility can be used to inspect the lines for a given gpiochip:
# gpioinfo gpiochip0 gpiochip0 - 32 lines: line 0: unnamed "spi_imx" output active-high [used] line 1: unnamed unused input active-high line 2: unnamed unused input active-high ...
The gpioset
and gpioget
utilities can be used to manipulate GPIO from the command line.
For example, assuming GPIO4_21 is configured as a GPIO in your device tree:
Set GPIO4_21 high:
gpioset gpiochip3 21=1
Set GPIO4_21 low:
gpioset gpiochip3 21=0
Read GPIO4_21:
gpioget gpiochip3 21
libgpiod C Application
libgpiod provides bindings for C/C++ applications. C++ examples are available in the libgpiod /tree/bindings/cxx/examples directory.
Below is a simple C application demonstrating how to use the bindings with GPIO4_IO21:
Makefile:
all: main.cpp $(CC) $(CCFLAGS) -Og -lgpiod main.c -g -o hello.bin clean: rm -f hello.bin
main.c
#include <gpiod.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> #define CONSUMER "Variscite Demo" int main(int argc, char **argv) { unsigned int i, ret, val; struct gpiod_chip *chip; struct gpiod_line *line; const char * chipname = "gpiochip3"; const unsigned int line_num = 21; chip = gpiod_chip_open_by_name(chipname); if (!chip) { perror("Open chip failed\n"); goto end; } line = gpiod_chip_get_line(chip, line_num); if (!line) { perror("Get line failed\n"); goto close_chip; } ret = gpiod_line_request_output(line, CONSUMER, 0); if (ret < 0) { perror("Request line as output failed\n"); goto release_line; } /* Blink 5 times */ val = 0; for (i = 0; i < 5; i++) { ret = gpiod_line_set_value(line, val); if (ret < 0) { perror("Set line output failed\n"); goto release_line; } printf("Output %u on line #%u\n", val, line_num); sleep(1); val = !val; } release_line: gpiod_line_release(line); close_chip: gpiod_chip_close(chip); end: return 0; }
libgpiod Python Application
libgpiod provides bindings for python applications:
# pip3 install gpiod
Python examples are available in the libgpiod /tree/bindings/python/examples directory.
Manipulating a single GPIO via /sys/class/gpio
Using a command line or a script
GPIOs in i.MX are grouped in groups of 32 pins.
For example, GPIO1_3 belong to the first group, pin 3. Its absolute number will be 3.
GPIO7_4 will be (7-1)*32+4=196.
Assuming this GPIO is defined in your device tree, the following is an example of how to use it from userspace.
To export the GPIO for userspace use:
$ echo 196 > /sys/class/gpio/export
To configure as output:
$ echo out > /sys/class/gpio/gpio196/direction
Set GPIO high:
$ echo 1 > /sys/class/gpio/gpio196/value
Set GPIO low:
$ echo 0 > /sys/class/gpio/gpio196/value
To configure as input:
$ echo in > /sys/class/gpio/gpio196/direction
Read the current value:
$ cat /sys/class/gpio/gpio196/value
To free the GPIO after you're done using it:
$ echo 196 > /sys/class/gpio/unexport
Using a C application
All of the command line operations above can be translated to C code:
Reserve (export) the GPIO:
#define IMX_GPIO_NR(port, index) ((((port)-1)*32)+((index)&31)) int fd; char buf[MAX_BUF]; int gpio = IMX_GPIO_NR(7, 4); /* Just an example */ fd = open("/sys/class/gpio/export", O_WRONLY); sprintf(buf, "%d", gpio); write(fd, buf, strlen(buf)); close(fd);
Set the GPIO direction:
sprintf(buf, "/sys/class/gpio/gpio%d/direction", gpio); fd = open(buf, O_WRONLY); /* Set out direction */ write(fd, "out", 3); /* Set in direction */ write(fd, "in", 2); close(fd);
In case of out direction set the GPIO value:
sprintf(buf, "/sys/class/gpio/gpio%d/value", gpio); fd = open(buf, O_WRONLY); /* Set GPIO high status */ write(fd, "1", 1); /* Set GPIO low status */ write(fd, "0", 1); close(fd);
In case of in direction get the current GPIO value:
char value; sprintf(buf, "/sys/class/gpio/gpio%d/value", gpio); fd = open(buf, O_RDONLY); read(fd, &value, 1); if (value == '0') { /* Current GPIO status low */ } else { /* Current GPIO status high */ } close(fd);
Once finished, free (unexport) the GPIO:
fd = open("/sys/class/gpio/unexport", O_WRONLY); sprintf(buf, "%d", gpio); write(fd, buf, strlen(buf)); close(fd);
Important notes:
- Remember that after the first read operation the file pointer will move to the next position in the file, so to get a correct value for each read operation you simply have to set the file pointer at the beginning of the file before read by using the following command:
lseek(fd, 0, SEEK_SET);
- This is only a short example. If you want to use it in your code remember add error handling to it.
Kernel Device Tree GPIO configuration
Device Tree GPIO files
Pin Func files
In the directory arch/arm/boot/dts/ of the Linux kernel source you will find the pin functions definitions files.
The relevant files are imx7d-pinfunc-lpsr.h (the first 8 GPIOs), and imx7d-pinfunc.h (the rest).
If you edit it and search for GPIO4_IO13, for example, you will see a group of definitions with same prefix (pad name), "MX7D_PAD_I2C3_SDA".
#define MX7D_PAD_I2C3_SDA__I2C3_SDA 0x015C 0x03CC 0x05E8 0x0 0x2 #define MX7D_PAD_I2C3_SDA__UART5_DCE_RTS 0x015C 0x03CC 0x0710 0x1 0x1 #define MX7D_PAD_I2C3_SDA__UART5_DTE_CTS 0x015C 0x03CC 0x0000 0x1 0x0 #define MX7D_PAD_I2C3_SDA__FLEXCAN2_TX 0x015C 0x03CC 0x0000 0x2 0x0 #define MX7D_PAD_I2C3_SDA__CSI_HSYNC 0x015C 0x03CC 0x0518 0x3 0x1 #define MX7D_PAD_I2C3_SDA__SDMA_EXT_EVENT1 0x015C 0x03CC 0x06DC 0x4 0x1 #define MX7D_PAD_I2C3_SDA__GPIO4_IO13 0x015C 0x03CC 0x0000 0x5 0x0 #define MX7D_PAD_I2C3_SDA__EPDC_BDR1 0x015C 0x03CC 0x0000 0x6 0x0
Adding only the one with the GPIO4_IO13 suffix (function) to your dts file will let you use the pin as GPIO.
Variscite dts files
There are two dts files for the VAR-SOM-MX7, one for SOMs with eMMC, and one for SOMs with NAND flash:
imx7d-var-som-emmc.dts imx7d-var-som-nand.dts
Each of them includes our common arch/arm/boot/dts/imx7d-var-som.dtsi and adds the definitions of the relevant storage (eMMC/NAND flash).
At the top of imx7d-var-som.dtsi there are the following includes:
#include <dt-bindings/input/input.h> #include "imx7d.dtsi"
The imx7d.dtsi defines the CPU platform and includes the appropriate pinfunc header files.
Define a pin as GPIO in the kernel Device Tree
You need to add the relevant definitions to your device tree, as explained in the Pin Func files section above.
Edit arch/arm/boot/dts/imx7d-var-som.dtsi and add the definition for the GPIO you need in one of the sections below.
For the first 8 GPIOs:
&iomuxc_lpsr { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_hog_2 &pinctrl_usbotg2_pwr_2>; imx7d-sdb { pinctrl_hog_2: hoggrp-2 { fsl,pins = < MX7D_PAD_GPIO1_IO05__GPIO1_IO5 0x14 >; };
For the rest:
&iomuxc { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_hog_1>; imx7d-sdb { pinctrl_hog_1: hoggrp-1 { fsl,pins = < MX7D_PAD_GPIO1_IO14__GPIO1_IO14 0x80000000 /* bt reg on */ MX7D_PAD_EPDC_PWR_COM__GPIO2_IO30 0x80000000 /* capacitive touch irq */ MX7D_PAD_SD2_RESET_B__GPIO5_IO11 0x59 /* ethphy0 reset */ MX7D_PAD_UART2_TX_DATA__GPIO4_IO3 0x59 /* ethphy1 reset */ MX7D_PAD_GPIO1_IO10__GPIO1_IO10 0x59 /* hsic hub reset */ MX7D_PAD_GPIO1_IO12__GPIO1_IO12 0x59 /* hsic hub connect */ MX7D_PAD_GPIO1_IO13__GPIO1_IO13 0x59 /* LED */ MX7D_PAD_SD1_WP__CCM_CLKO2 0xb0 /* camera clock */ >; };
Device Tree GPIO attribute
If you look at Documentation/devicetree/bindings/pinctrl/fsl,imx7d-pinctrl.txt in the Linux kernel source tree, the number to the right of the pin control spec can be used for additional attributes like pull-ups, pull-downs, keepers, drive strength, etc.
The value 0x80000000 is "don't know value please use the default". Else use the table below to set it to the required value.
CONFIG bits definition |
value |
---|---|
PAD_CTL_PUS_100K_DOWN | (0 << 5) |
PAD_CTL_PUS_5K_UP | (1 << 5) |
PAD_CTL_PUS_47K_UP | (2 << 5) |
PAD_CTL_PUS_100K_UP | (3 << 5) |
PAD_CTL_PUE | (1 << 4) |
PAD_CTL_HYS | (1 << 3) |
PAD_CTL_SRE_SLOW | (1 << 2) |
PAD_CTL_SRE_FAST | (0 << 2) |
PAD_CTL_DSE_X1 | (0 << 0) |
PAD_CTL_DSE_X2 | (1 << 0) |
PAD_CTL_DSE_X3 | (2 << 0) |
PAD_CTL_DSE_X4 | (3 << 0) |